Surface Area and Volume of Composite Solids Tier A

1.

Oliver built a mailbox and wants to know exactly how much it can hold. What is the total volume of the mailbox?

What is the volume of the triangular prism? (area of base x height)

What is the volume of the rectangular prism? (length x width x height)

What is their sum?
2.

How many square centimeters of paint would be needed to paint the roof of this house?
(remember you are finding the area of 4 faces. There are 2 triangles and 2 rectangles)

FACE	Formula and Work
Triangle	
Triangle	
Rectangle	
Rectangle	

AND THE SUM IS:
3.

4 yd

Find the volume of the solid above. (remember you are adding the volume of two rectangular prisms together. The formula for each is length x width x height)

PRISM	FORMULA AND WORK
Figure A	
Figure B	

AND THE SUM IS:

Find the total volume of this solid.
4.

(remember you are adding the volume of two rectangular prisms together. The formula for each is length x width x height)

PRISM	FORMULA AND WORK
Figure A	
Figure B	

AND THE SUM IS:

5) CHALLENGE - try it!! If you get it - counts for 2 points for your Boot Camp group.

Volume of a rectangular prism $\mathrm{V}=\mathrm{Bh}=(\mathrm{l} \times \mathrm{w}) \mathrm{h}$	
Volume of a rectangular prism $\mathrm{V}=\mathrm{Bh}=(\mathrm{I} \times \mathrm{w}) \mathrm{h}$	
Volume of a rectangular prism $\mathrm{V}=\mathrm{Bh}=(\mathrm{I} \times \mathrm{w}) \mathrm{h}$	

