

Unit 4: Probability and statistics Topics
\checkmark Basic Probability (what is the probability of....)
\checkmark Theoretical vs. Experimental
\checkmark Tree Diagrams
\checkmark Fundamental Counting Principle
\checkmark Compound Events
\checkmark Simulations
\checkmark Biased and Unbiased Samples
\checkmark Measures of Central Tendency
\checkmark MAD
\checkmark Histograms
\checkmark Box and Whisker Plots
\checkmark Comparing Data Sets

S!andard: 7.SP. 5
Probabilly Inlro

Page \# 6 Date \qquad

2) $72 \div(2+4)^{2}=$

A Letter from the word MATHEMATICS is chosen at random.

a) List the possible outcomes:
b) List the favorable outcomes for:

1) choosing an H
2) choosing an M
3) Not choosing an s
4) Choosing a vowel

The spinner below is spun once.
a) List the possible outcomes:
b) List the favorable outcomes of:

1) Spinning a 12
2) Spinning an even number
3) Spinning a number less than 8
4) Spinning a prime number

The spinner is spun once. Find each probability as a fraction (in simplest form), decimal, and percent.
a) P (odd)
b) $\quad P$ (multiple of 4)
c) $\quad P$ (prime number)
d) P (even or greater than 5)

Page \# 66

 Dale: \qquad

Amanda used a standard deck of 52 cards and selected a card at random. She recorded the suit of the card she picked, and then replaced the card. The results are in the table below.

1. Based on her results, what is the experimental probability of selecting a heart?
2. What is the theoretical probability of selecting a heart?
3. Based on her results, what is the experimental probability of selecting a diamond or a spade?
4. What is the theoretical probability of selecting a diamond or a spade?
5. Compare these results, and describe your findings.

SIandard: 7.SP. 5 Tree Diagrams

Page \# 68

 Dale: \qquad

1) A family has two children. Draw a tree diagram to show the sample space of the children's genders. Then determine the probability of the family having two girls.
2) Natalie has 8 socks in a drawer. 5 of the socks are black. 3 of the socks are white. Natalie takes out a sock at random, writes down its color and puts it back into the drawer. Then Natalie takes out a second sock, at random, and writes down its color. What is the probability that two socks are the same color?

Page \#70
Dale: \qquad

Another way you can find the total outcomes is by using the
\qquad
activity can occur in \qquad ways and another activity can occur in \qquad ways, then both activities can occur in \qquad
3) Can these lengths make a triangle?

3, 6, 10 ways. So, you \qquad _

EX: If a restaurant offers 3 different drinks, 5 different meals and 2 kinds of dessert. How many total different ways can a person order when ordering?

1. Suppose most of your clothes are dirty and you are left with 2 pants and 3 shirts. How many choices do you have or how many different ways can you dress?

2. You go to a restaurant to get some breakfast. The menu for food says pancakes, waffles, or home fries. For drinks the menu says: coffee, juice, hot chocolate, and tea. How many different choices of food and drink do you have?
3. You are buying a new car.

There are $\mathbf{2}$ body styles:

There are 5 colors available: $\square \square \square$

2) What is 110%
of 110 ?

P (compound event) $=P$ (1st event) $\times P\left(2^{\text {nd }}\right.$ event $) \times P\left(3^{\text {rd }}\right.$ event $)$

Dependent Events
Events where one event \qquad affect the likelihood/probability of the other events. (Without replacement - \qquad _)

There were 24 students in math class today. What is the probability that Mrs. Barnes randomly chooses Charlie to run to the office and randomly chooses Sophie to go with him?

Independent Events

Events where one event \qquad
affect the likelihood/probability of the other events. (With replacement-

_)

You spin the spinner and then flip the coin. Find the probability of spinning a red or blue and getting tails.

Standard: 7.SP.8c
Designing SImulalions

Page \# 74 Dale: \qquad

EXAMPLE: PRIZES

Simulations use models to ack out an event that would be hard to perform or impractical.
objects that can be used are:

A cereal company marks $1 / 6$ of its box lids with stars. If a customer gets a star, he or she wins a prize. Design a simulation for estimating the probability that a customer will need to buy at least 3 boxes to win a prize.
a) What common item from your choices could you use as a simulator?
Why would this be a "good choice" to use for this simulation? (Hint: Think about the possible outcomes this simulator has)

Slandard: 7.SP.I
Biased and Unbiased Samples

Page \# 76 Dale
:___-_-_-_-_

2) 5 is what $\%$ of

22?

Practice

Determine whether each sample is biased or unbiased. Explain your thinking.

1) Mary interviewed the members of her lacrosse team to ask them what their favorite sport is.
2) The school board interviewed students in the band program to see if more money should be put into athletic programs or music programs at school?
3) A travel agent asks every other person who enters the mall what their favorite vacation destination is?

Slandard: 7.SP. 4 Measures of Ceniral Tendency

Page \# 78
Dale: \qquad

Slandard: 7.SP. 4 Mean Absolule Devialion

Page \# 80
Dale:
:_-_------

The Mean Absolute Deviation (MAD) of a set of data is
\qquad

Variability is
\qquad
\qquad
3) Find x.

The larger the MAD,

- \qquad

4) Classify the triangle by its sides and angles.

Compare the graphs by discussing their variability:

Let's compare Sam's data set with that belonging to Bill's to see what the Mean Absolute Deviation (MAD) tells us.

Steps to find the MAD		Sam's Data Set: $(94,85,86,93,5,88,91)$	Bill's Data Set: $(92,83,88,94,91$, $85,89)$
1)	Find the mean		
2)	Find the distance between each data value and the mean. (Remember distance will be positive because you are finding distances or absolute values)		
3)	Find the average (mean) of these absolute values.		
4)	Make a conclusion		

1) Can these side lengths make a
triangle?
$10,20,12$
2) Write as a \% $\frac{24}{32}$
3) Angles 7 and 8 are what type of angles?
4) Is this polygon
regular? Why or
why not?
5) $\frac{7}{8}$ as a decimal?

No call.

A stem-and-le af plot is a way of data using the digits of the data.

Step 1: Pick your "stems" and "leaves." You want the leaf to be one digit.

Stemplot of Data Set
046
1248
2
33445578
4225
5018

6	
7	8

72

Heights of Ceilings (cm)	
Stem	Leaf
24	1
25	0333
26	228
27	1.7
Key: $24.11=241 \mathrm{~cm}$	

List the data from least to greatest.

1) Find the mean. \qquad
Find the median. \qquad
Find the mode. \qquad
Find the range. \qquad
Why are some ceilings taller than others?

Make a stem and leaf plot!
$31,48,29,34,94,36,41,45,27,49$,
$56,49,36,52,48,96,50,54,30,29$

Key: $2 \mid 7=$ \qquad

Standard: 7.SP. 3 Histograms

Page \# 84
Dale: \qquad

2) Write as a fraction:

95\%
Did you simplify??
3) Find the area. Units are ft.
4) Is this a unique triangle?
$\angle A=80^{\circ}$
$\angle B=20^{\circ}$
$<C=80^{\circ}$
5) $>,<$, or $=$ $\frac{3}{50}-.6 \%$
 graph that shows d
sing different might think it is like bar graph, but there are some differences.

1. No Gaps: In a histogram there are no
\qquad between the bars
2. Numbers are grouped into
\qquad . You decide what
\qquad to use.

Practice

A) Look at the histogram on the left. Which axis indicates the frequency?
B) What does the horizontal axis indicate?
C) How is the horizontal axis organized?
D) How many had scores in the interval 60-69?
E) Which interval contained the fewest scores?
F) What was the highest score?

The box-and-whisker plot represents the prices (in dollars) of soccer balls at different sporting goods stores.

Give the five number summary:
Minimum:

Lower Quartile:
Median:

Upper Quartile:
Maximum:

1) What is the range?
2) What is the interquartile range?
3) What percent of the balls are between $\$ 8.50$ and $\$ 11.25$?
4) What percent of the balls are at most $\$ 20.25$?
5) Does the data vary more above or below the median?

Make a box-and-whisker plot for the data.
Hours of TV watched: $0,3,4,5,3,4,6,5$

