\qquad
Date \qquad Pd \qquad

INDEPENDENT EVENTS

Review the process for multiplying fractions.

$$
\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8} \quad 2^{\frac{1}{8} \cdot \frac{4}{5}}=\frac{1}{10} \quad 3^{\frac{2}{9}} \cdot \frac{3}{5}=\frac{2}{15}
$$

Replacement : returning the event so the total possibility - When the outcome of one event does not impact the outcome

INDEPENDENT PROBABILITY

 of the second event, the events are called independent.- Independent probability can be determined by multiplying the probability of each event happening, or $P(A$ and $B)=\frac{P(A)}{!!} \cdot \frac{P(B)}{}$

This means "probability of A and B
Use your understanding of probability and independent events to answer the questions below.
In a board game, students draw a card, replace it, and then draw a second card. Determine the probability of each event.

1. To earn 50 points, a student must draw a heart-eyed card and then an angel card.

$$
\frac{1 \frac{2}{8}}{\text { heart-eyed }} \cdot \frac{\frac{1}{84}}{\text { angel }}=\frac{1}{32}
$$

2. To earn 20 points, a student must draw a sleeping card and then an angry card.

$$
\frac{\frac{21}{84}}{\text { sleeping }} \cdot \frac{\frac{21}{84}}{\text { angry }}=\frac{1}{16}
$$

3. To earn 15 points, a student must draw an angry card or a laughing card and then an angel.

$$
\frac{1 . \frac{3}{8}}{\text { angry or laughing }} \cdot \frac{\frac{1}{8}}{\text { angel! }}=\frac{3}{64}
$$

4. To earn 5 points, a student must draw a sleeping card or a heart-eyed card and then an angry card.

$$
\frac{\frac{41}{8} 2}{\text { sleeping or heart-eyed }} \cdot \frac{\frac{21}{8} 4}{\text { angry }}=\frac{1}{8}
$$

Carefully read each problem and solve.

