SOLIDS FOR YOUR TORSO

- YOU NEED 4 OF THESE FIGURES
- CHOOSE 1 OR 2 FROM COLUMN A
- IF YOU CHOOSE 1 FROM COLUMN A, THEN YOU NEED 3 FROM COLUMN B
- IF YOU CHOOSE 2 FROM COLUMN A, THEN YOU NEED 2 FROM COLUMN B

Tier A

APPE	ND]	IX 2
------	-----	------

TORSO SHAPES

✓	My 4 solids are:		Shapes I will have on my drawing:
$\mathcal{I}_{\mathcal{I}}$	ample: <u>Tríangular prísm</u>		<u>Triangle</u>
-	-		
-			
-			
✓	Are my shapes solidly connecte	ed together?	
✓	Dimensions of my solids:		
		Length=	Width=
		Length=	Width=
		Length=	Width=
		Length=	Width =

.

- $\checkmark~$ I am thinking about using $\,$ my circuit to
- ✓ And I will place the circuit:

APPENDIX 3

Triangular

Prism

SLIDE SAMPLES

SLIDE # 1 SAMPLE

Highlights~ Watching something that I have imagined in my head come together was very cool and exciting and taping the shapes together was very easy. Hardships~ It was very hard to cut the cardboard to make my shapes, and I had to keep trying and trying to get the shapes right. Also, I couldn't figure out how to fit my torso in one picture.

SLIDE # 2 SAMPLE

PRANIT SHAH; WFFK 2: SCALF A shope with twok " Fill dagent 233 squarel 33 Squarel 43 ked. 1 Bird's Exprise or lop Vier My highlights for this part of the project is that it was easy and fun putting the shapes Octagond together on your graph paper, and I liked how my project looked from above so it might change how Prism Restangular Prism I present my project. The hardest part of this project was when I changed my scale because my project wouldn't fit Octagon on the graph paper with the scale 4:3, I ended up changing it to 5:3. Triangle Rectangle Pentagonal Hexagonal ach shope with look " () Octogen 23 Squarel 33 Square Miked 1 4. Kerthury Bird's Eperiew or Top Vier rism

SLIDE #3 SAMPLE

Kyle LeVangie: Week Three Appendages

Hardships: It was hard to make my head (which is styrofoam) stop shedding so I put a plastic bag over it.

Highlights: It was fun to see what my project became. I also enjoyed using the glue gun.

- I. Cone
- 2. Square P

- 8. Sphere
 9. Triangular pyramid
 10. Cylinder

FINAL SLIDE SAMPLE

worked really hard on it and I think it turned out well. One thing I would change is the legs. One thing that helped me practice math was the scaling. It was a good refresher on how to scale things down and then graph it. I think this project was very well run this year. I liked how it was broken up into different assignments so it wasn't overwhelming and I liked how we had our folders so we could work ahead in the weeks if we wanted. I also think that not doing that perimeter and area was a good idea. I think it would have been more rushed and stressful if we had to and it was just a review. My story is about Lucy the ladybug who tries to be helpful when planning her friends birthday party, but

APPENDIX 4a

Appendix 4A

CALCULATIONS: ASSIGNMENT # 2

Scale factor for my project will be:

 $l'': \frac{1}{2}$ (write it on your graph paper too)

Shape # 1 is a: Nex prism 3 dimensional

hexagon on drawing

Dimensions of the actual shape:

rangth: 3.5"

Width: 4"

Scale calculations (2 proportions below for length and width):

 $\frac{Length}{1.5} = \frac{3.5}{x} \qquad \frac{1}{.5} = \frac{4}{.5} \\ x = 1.75'' \qquad x = 2''$

Shape # 2 is a: <u>Rect prism</u>3 dimensional

Rect on drawing

Dimensions of the actual shape:

Length: 3,2"

Width: 2"

Scale calculations (2 proportions below for length and width):

Length = width	
1 = 3.2	$\perp = 2$
.5 ×	•5 X
X=1.6"	x= 1

Tier A

APPENDIX 4

Shape #1 is a:	Shape #2 is a:	
3 – D (on my creature)	3 – D (on my creature)	
as a polygon on my drawing	as a polygon on my drawing	
Dimensions of the actual shape: (in inches)	Dimensions of the actual shape: (in inches)	
Length = Width =	Length = Width =	
Scale Calculations: (2 proportions below: 1 for length and 1 for width):	Scale Calculations: (2 proportions below: 1 for length and 1 for width):	
Shape #3 is a:	Shape #4 is a:	
3 – D (on my creature)	3 – D (on my creature)	
as a polygon on my drawing	as a polygon on my drawing	
Dimensions of the actual shape: (in inches)	Dimensions of the actual shape: (in inches)	
Length = Width =	Length = Width =	
Scale Calculations: (2 proportions below: 1 for length and 1 for width):	Scale Calculations: (2 proportions below: 1 for length and 1 for width):	

APPENDIX 5

Creativity and Effort Rubric

	Extending	Achieving	Developing	Beginning
Effort	 ✓ Complete ✓ Detailed ✓ Great pride in work ✓ Work is beyond what is expected ✓ Shows personal touch 	 ✓ Complete ✓ Detailed ✓ Pride in work ✓ Work is what is expected 	 ✓ Some part not complete ✓ Little detail ✓ Work is a little less than what is expected 	 ✓ Some parts not complete ✓ Little to no detail ✓ Work is not what is expected ✓ Project looks forced ✓ Lacks accuracy and/or clarity
Creativity	 ✓ Many new and original ideas; unique ✓ Does not look like all the others ✓ Eye Catching ✓ Exemplary use of color, texture, shapes and spacing of materials 	 ✓ Some original ideas ✓ Visually appealing ✓ Good use of color, texture, shapes and spacing of materials 	 Some new ideas or improvements, but most is predictable Some parts visually appealing Experimenting with the use of color, texture, shapes and spacing of materials Experiments with creating a new model Seems familiar and not new. 	 ✓ No original ideas; relies on existing models or ideas ✓ Not visually appealing ✓ None or very little use of color, texture, shapes ✓ Materials are not connected effectively
Neatness	 ✓ Patiently completed ✓ All parts are well attached ✓ Well organized ✓ Clean and neat 	 ✓ Completed ✓ Parts are attached, but not securely ✓ Clean and neat ✓ Organized 	 ✓ Completed in a hurry ✓ Parts are wobbly ✓ Work is a little messy 	 ✓ Not completed ✓ Parts are falling off ✓ Not organized ✓ Messy work – not clean and neat

PERIMETER AND AREA

APPENDIX 6

Perimeter – Polygon 1 Shape:	Area – Polygon 1 Shape:
Sketch your shape here and then determine the perimeter.	Sketch your shape here, show the formula you will use, and then show your work.
Write on your drawing P =	Write on your drawing A =
Perimeter – Polygon 2 Shape:	Area – Polygon 2 Shape:
Sketch your shape here and then determine the perimeter.	Sketch your shape here, show the formula you will use, and then show your work.
Write on your drawing P =	Write on your drawing A =

VOLUME AND SURFACE AREA OF RECTANGULAR PRISM

All volumes and surface areas are of the actual creatures, not the scaled drawing!

: Height:
Volume
Formula:
= Write on your drawing V =

TRIANGLES

TRIANGLE 1: TYPE OF TRIANGLE _____

SCALE CALCULATIONS:

TRIANGLE 2: TYPE OF TRIANGLE _____

SCALE CALCULATIONS:

TRIANGLE 3: TYPE OF TRIANGLE _____

SCALE CALCULATIONS:

Tier A

APPENDIX 9

Perimeter of Triangle # _____.

Sketch it here and then compute the perimeter.

Area of Triangle # _____.

Sketch it here. Formula you will be using: ______. Compute the area.

CYLINDER

Actual cylinder Height = _____ Actual cylinder width (diameter) =

Scale calculations:

Height:

Width:

Sphere – determine the diameter from the circumference. Measure the circumference and then use a formula to determine the diameter. Formula to use: ______.

Scale calculations using the diameter:

Circumference of the circle you have drawn on your graph paper to represent your sphere.

Formula:

Calculations:

Area of the circle you have drawn on your graph paper to represent your sphere.

Formula:

Calculations:

CIRCLES

DIAMETER OF ACTUAL CIRCLE:

Scale calculations: (use the diameter and proportion)

Circumference of scaled circle		
Formula:		
Work:		
	Area of scaled circle	
Formula:		
Work:		